Merging particle filter for sequential data assimilation
نویسندگان
چکیده
A new filtering technique for sequential data assimilation, the merging particle filter (MPF), is proposed. The MPF is devised to avoid the degeneration problem, which is inevitable in the particle filter (PF), without prohibitive computational cost. In addition, it is applicable to cases in which a nonlinear relationship exists between a state and observed data where the application of the ensemble Kalman filter (EnKF) is not effectual. In the MPF, the filtering procedure is performed based on sampling of a forecast ensemble as in the PF. However, unlike the PF, each member of a filtered ensemble is generated by merging multiple samples from the forecast ensemble such that the mean and covariance of the filtered distribution are approximately preserved. This merging of multiple samples allows the degeneration problem to be avoided. In the present study, the newly proposed MPF technique is introduced, and its performance is demonstrated experimentally.
منابع مشابه
Sequential Data Assimilation: Information Fusion of a Numerical Simulation and Large Scale Observation Data
Data assimilation is a method of combining an imperfect simulation model and a number of incomplete observation data. Sequential data assimilation is a data assimilation in which simulation variables are corrected at every time step of observation. The ensemble Kalman filter is developed for a sequential data assimilation and frequently used in geophysics. On the other hand, the particle filter...
متن کاملComparison of sequential data assimilation methods for the Kuramoto-Sivashinsky equation
The Kuramoto-Sivashinsky equation plays an important role as a low-dimensional prototype for complicated fluid dynamics systems having been studied due to its chaotic pattern forming behavior. Up to now, efforts to carry out data assimilation with this 1-d model were restricted to variational adjoint methods domain and only Chorin and Krause [26] tested it using a sequential Bayesian filter app...
متن کاملData Assimilation Based on Sequential Monte Carlo Methods for Dynamic Data Driven Simulation
Simulation models are widely used for studying and predicting dynamic behaviors of complex systems. Inaccurate simulation results are often inevitable due to imperfect model and inaccurate inputs. With the advances of sensor technology, it is possible to collect large amount of real time observation data from real systems during simulations. This gives rise to a new paradigm of Dynamic Data Dri...
متن کاملParticle filter and EnKF as data assimilation methods for the Kuramoto-Sivashinsky Equation
The Kuramoto-Sivashinsky equation plays an important role as a low-dimensional prototype for complicated fluid dynamics systems having been studied due to its chaotic pattern forming behavior. Up to now, efforts to carry out data assimilation with this 1-d model were quasi totally restricted to variational adjoint methods domain and only Chorin and Krause [26] tested it using a sequential Bayes...
متن کاملSequential data assimilation for streamflow forecasting using a distributed hydrologic model: particle filtering and ensemble Kalman filtering
Accurate streamflow predictions are crucial for mitigating flood damage and addressing operational flood scenarios. In recent years, sequential data assimilation methods have drawn attention due to their potential to handle explicitly the various sources of uncertainty in hydrologic models. In this study, we implement two ensemble-based sequential data assimilation methods for streamflow foreca...
متن کامل